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Abstract: Financial portfolio optimization has long been a central challenge in
quantitative finance, aiming to balance the trade-off between maximizing returns and
minimizing risks. Traditional portfolio management strategies, such as the mean-
variance model, rely heavily on predefined assumptions about market distributions and
are limited by static parameter configurations. In contrast, deep reinforcement learning
(DRL) provides a flexible and adaptive framework capable of learning optimal policies
directly from data. This paper proposes a Deep Reinforcement Learning-Based
Adaptive Portfolio Optimization (DRL-APO) framework that integrates temporal
feature extraction, policy gradient learning, and reward shaping mechanisms to
address the dynamic and stochastic nature of financial markets. The proposed
approach combines a convolutional feature encoder and a long short-term memory
(LSTM) network to capture multi-scale temporal dependencies from historical price
data, while a proximal policy optimization (PPO) agent dynamically adjusts asset
weights to optimize the Sharpe ratio and cumulative return. Experimental evaluations
conducted on benchmark financial datasets, including S&P 500, NASDAQ, and
cryptocurrency indices, demonstrate that DRL-APO consistently outperforms
traditional baselines such as Mean-Variance, Deep Q-Learning, and Actor-Critic
models. The proposed method achieves superior adaptability to volatility shifts and
robust performance under varying market regimes.
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1. Introduction

The problem of portfolio optimization lies at the intersection of finance, statistics, and machine
learning, serving as one of the most critical tasks in modern quantitative research. The objective is to
determine the optimal allocation of capital among multiple assets in a way that maximizes expected
returns while controlling risk exposure. Classical approaches such as Markowitz’s mean-variance theory
assume that market returns follow Gaussian distributions and that the covariance structure between assets
remains constant over time [l1]. However, real financial markets exhibit non-stationarity, fat-tailed



distributions, and regime shifts driven by complex economic, political, and behavioral dynamics that
violate these assumptions. As a result, static optimization models often fail to adapt to sudden changes in
market volatility and lead to suboptimal portfolio allocations under real-world conditions.

With the advent of deep learning, financial modeling has undergone a paradigm shift from handcrafted
statistical models to data-driven feature representation. Deep neural networks (DNNs) are capable of
learning hierarchical structures from large-scale, heterogeneous datasets, enabling the extraction of
nonlinear dependencies and latent temporal correlations [2]. Yet despite their remarkable ability to model
complex patterns, conventional deep learning architectures are inherently static-they predict or classify
based on historical data but lack the decision-making capability required for sequential portfolio
adjustments. Reinforcement learning (RL), inspired by behavioral psychology, introduces an alternative
learning mechanism where an intelligent agent interacts with an environment and learns policies that
maximize cumulative rewards through experience [3]. When combined with deep neural networks, deep
reinforcement learning (DRL) provides a powerful framework for high-dimensional sequential decision-
making in stochastic environments [4]. In the context of finance, DRL agents can autonomously adjust
portfolio weights according to dynamic market states, continuously improving their strategies through
trial-and-error interactions.

Recent studies have applied DRL in various financial domains, including algorithmic trading [5], risk-
sensitive portfolio management [6], and hedging under uncertain market conditions [7]. Nevertheless,
several challenges persist. First, many DRL-based financial systems are prone to overfitting when trained
on limited historical data, resulting in poor generalization during market regime changes. Second,
instability in gradient updates often leads to policy oscillations and inconsistent returns. Third, most DRL
models ignore volatility adaptation and risk-sensitive optimization, focusing primarily on maximizing
returns without considering downside protection. Consequently, these limitations hinder their deployment
in real-world investment scenarios where robustness and adaptability are crucial.

To overcome these challenges, this paper introduces a Deep Reinforcement Learning-Based Adaptive
Portfolio Optimization (DRL-APO) framework that tightly integrates temporal awareness, volatility
adaptation, and risk-sensitive reward modeling. The framework employs a hybrid CNN-LSTM encoder
that jointly captures local price dynamics and global temporal dependencies, providing a rich state
representation of market evolution. These extracted features are then fed into a Proximal Policy
Optimization (PPO) policy network, which learns to optimize portfolio weights under continuous action
spaces. A dynamic, volatility-aware reward function is further designed to penalize excessive risk-taking
and incentivize stable returns, balancing the trade-off between exploration and exploitation in high-
volatility regimes. Unlike conventional DRL algorithms, which may exhibit divergence under large
reward variance, the proposed approach includes a reward normalization mechanism that stabilizes
training across different market regimes.

Through extensive experiments conducted on diversified financial datasets covering stocks, exchange-
traded funds (ETFs), and cryptocurrencies, the DRL-APO framework demonstrates superior adaptability
and robustness. It achieves higher Sharpe ratios, lower maximum drawdowns, and more consistent
cumulative returns compared with benchmark methods. Moreover, the model exhibits strong resilience to
volatility spikes and regime transitions, showing that reinforcement learning, when properly regularized
and guided by structured reward mechanisms, can provide a feasible and effective solution to adaptive
portfolio optimization in real financial markets. The rest of this paper is organized as follows: Section III
details the proposed methodology and presents the model architecture; Section IV discusses the
performance evaluation and experimental results; Section V analyzes findings and implications; and
Section VI concludes with insights and directions for future research.



2. Proposed Approach

The proposed Deep Reinforcement Learning-Based Adaptive Portfolio Optimization (DRL-APO)
framework aims to dynamically adjust asset allocations through continuous interaction between the
learning agent and financial environments. The overall architecture is illustrated in Figure 1, which
consists of three major components: a feature extraction module for market representation, a policy
learning module based on proximal policy optimization, and a volatility-aware reward modeling
mechanism for risk control. Market data streams, including price, volume, and technical indicators, are
first processed by a hybrid CNN-LSTM encoder that captures both short-term price fluctuations and

long-term temporal dependencies. These extracted features form the state vector S, which is passed into
the policy network. The policy network then outputs the continuous portfolio weight vector a, ,

representing the proportion of capital allocated to each asset at time step t. After executing the action,
the environment returns the next market state and corresponding reward, which quantifies the
effectiveness of the chosen allocation. The system iteratively updates its policy through gradient-based
optimization until convergence toward an optimal investment strategy.
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Figure 1. DRL-APO Framework Architecture

At the mathematical level, the policy network is trained to maximize the expected cumulative

reward J (0), where Orepresents the policy parameters. The optimization objective follows the standard
policy-gradient formulation:

VeJ(0) = E; [Vglog my(as|s;) Al

where 14 (a,|s,)denotes the probability of taking action a,in state S,, and A,is the advantage
function that estimates the relative value of an action compared to the baseline. In the DRL-APO
framework, the policy update is further stabilized by the clipping mechanism of proximal policy
optimization, preventing excessively large gradient steps that could destabilize the learning process.
The reward function is designed to reflect the financial objective of maximizing risk-adjusted return.
Let R, denote the portfolio return at time t, U pthe expected return, and 0O gits volatility. The baseline
reward without risk adjustment can be formulated as:



Ty = log(l -+ Rt)

which ensures numerical stability for compounding returns. However, to align the learning target
with real investment performance, the final objective integrates a risk-adjusted component similar to the
Sharpe ratio, encouraging the agent to achieve high returns while minimizing volatility exposure. The
overall training objective is expressed as:
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where Ais the risk-aversion coefficient controlling the trade-off between return and volatility, and

T denotes the time horizon of the investment episode. This formulation enables the agent to implicitly
learn stable risk-sensitive policies that favor consistent long-term growth rather than short-term gains.

During training, the CNN-LSTM encoder continuously refines its representation through
backpropagation of policy gradients, ensuring that low-level features such as price movement, trading
volume, and market momentum are adaptively reweighted based on the learning feedback. The PPO
agent updates policy parameters after each batch of simulated trading episodes, using mini-batch
stochastic optimization with a clipped surrogate objective. Meanwhile, a volatility normalization module
adjusts the reward scaling factor in real time, mitigating extreme fluctuations that could disrupt gradient
flow.

The integration of temporal encoding, adaptive policy updates, and volatility-aware reward modeling
allows the DRL-APO framework to perform effectively under highly non-stationary market conditions.
The agent not only learns to exploit transient arbitrage opportunities but also to adaptively reduce
exposure during high-risk periods. This design provides a self-regulating investment mechanism that
bridges predictive modeling and active decision-making, achieving a balance between profitability and
stability that is essential for modern financial systems.

3. Performance Evaluation
3.1 Dataset

The proposed DRL-APO framework was evaluated using diversified financial datasets designed to
reflect distinct market characteristics, volatility regimes, and asset correlations. The datasets covered
three representative domains: equities, exchange-traded funds (ETFs), and cryptocurrencies. Equity data
were derived from major U.S. indices such as the S&P 500 and NASDAQ Composite, providing high-
frequency price and volume records over a ten-year span. The ETF dataset included assets with mixed
risk profiles, such as technology, healthcare, and energy sectors, serving as stable investment vehicles
with moderate volatility. The cryptocurrency dataset comprised Bitcoin, Ethereum, and Binance Coin,
reflecting highly stochastic market behavior suitable for testing robustness under extreme conditions.

Each dataset was normalized using logarithmic returns to reduce scale imbalance and stabilize
model convergence. Time-series segmentation was performed using rolling windows of 30 days,
creating overlapping training sequences that capture both short-term market fluctuations and long-term
structural dependencies. For each sequence, the model received multiple input channels including
closing price, moving averages, and relative strength indicators. Eighty percent of the data were used for
training, fifteen percent for validation, and the remaining five percent for testing. The training horizon
was aligned across datasets to ensure fair cross-domain comparison. All experiments were conducted



under consistent hyperparameters for the reinforcement learning agent, including fixed batch size,
learning rate, and policy update frequency, ensuring reproducibility and stable convergence.

3.2 Experimental Results

Empirical results demonstrate that the DRL-APO framework achieves superior adaptability,
convergence stability, and profitability when compared to conventional optimization and baseline deep
reinforcement models. The agent exhibited consistent growth trajectories throughout training,
maintaining balanced policy updates and minimal oscillations even under volatile conditions. Figure 2
illustrates the comparative training performance of DRL-APO and other benchmark agents. The proposed
framework achieves smooth convergence and sustained cumulative return improvement, whereas
traditional algorithms such as DQN and Actor-Critic models experience instability and abrupt
performance drops during turbulent market periods. The steady upward curve of DRL-APO confirms the
effectiveness of the volatility-aware reward mechanism in mitigating extreme drawdowns and stabilizing
long-term policy learning.
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Figure 2. Comparative Training Performance of DRL-APO and Baseline Models

Quantitative evaluation results are summarized in Table 1, which compares the proposed model with
widely used portfolio optimization methods. DRL-APO achieves the highest cumulative return, Sharpe
ratio, and stability index, along with the lowest maximum drawdown and volatility. These outcomes
demonstrate the model’s ability to balance risk and reward effectively while maintaining robustness in
diverse market environments.

Tablel. Performance Comparison of Portfolio Optimization Models

Model Cumulative Sharpe Ratio Max Volatility Stability Index
Return Drawdown




Mean- 0.138 0.42 0.35 0.27 0.58
Variance

DQN 0.187 0.55 0.28 0.22 0.64
Actor-Critic 0.194 0.61 0.25 0.2 0.69
PPO 0.216 0.73 0.21 0.18 0.76
DRL-APO 0.257 0.88 0.16 0.14 0.84
(Proposed)

The comparative analysis reveals that DRL-APO surpasses all baseline methods across major
performance indicators. The cumulative return improvement of approximately 19% over standard PPO
confirms that the integration of CNN-LSTM temporal encoding and policy gradient optimization enables
more accurate adaptation to dynamic market conditions. The risk-adjusted objective embedded within the
reward formulation contributes to consistent portfolio performance and effective volatility suppression.
Overall, these experimental findings validate the capability of the DRL-APO framework to deliver
resilient, self-adaptive investment strategies that align with real-world financial complexity.

4. Conclusion

This study presented a Deep Reinforcement Learning-Based Adaptive Portfolio Optimization (DRL-
APO) framework designed to address the dynamic, nonlinear, and volatile characteristics of modern
financial markets. Unlike traditional portfolio optimization approaches that depend on static statistical
assumptions, the proposed method leverages deep reinforcement learning to learn adaptive investment
policies directly from market interactions. By integrating a CNN-LSTM encoder with a Proximal Policy
Optimization agent and a volatility-aware reward function, the framework effectively captures temporal
dependencies, mitigates risk sensitivity, and optimizes portfolio weights in real time. The comprehensive
experimental results across multiple financial datasets demonstrate that DRL-APO consistently
outperforms classical mean-variance optimization, deep Q-learning, and actor-critic baselines in terms of
cumulative return, Sharpe ratio, and stability index. The results indicate that the inclusion of temporal
feature extraction and risk-adjusted reward shaping significantly enhances model robustness and
generalization, allowing the agent to maintain profitability even during high-volatility or regime-shift
periods.

Furthermore, the DRL-APO framework introduces a novel perspective on the intersection of deep
learning and financial decision-making. It not only demonstrates the potential of reinforcement learning
for continuous portfolio management but also provides a foundation for building autonomous, self-
evolving trading systems that can respond intelligently to shifting market conditions. The design of
volatility-aware reward mechanisms further bridges the gap between data-driven learning and risk-aware
investment objectives, establishing a balanced approach to performance optimization and capital
preservation. Although this study focuses on the evaluation of DRL-APO in simulated environments, the
promising outcomes suggest strong potential for real-world deployment when combined with transaction
cost modeling, liquidity constraints, and live data streaming.

Future research directions will focus on extending the framework to multi-agent reinforcement
learning systems, enabling cooperative or competitive behaviors among multiple investment agents to
better simulate market ecology. Incorporating explainability modules to interpret policy decisions and
integrating macroeconomic indicators or sentiment-driven data may further improve prediction accuracy
and interpretability. Overall, the proposed DRL-APO framework represents a significant step toward



intelligent, adaptive, and risk-aware financial management, providing an effective bridge between
advanced machine learning theory and practical investment strategy design.
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